Optimal integral-proportional derivative controller design for input load disturbance rejection of time delay integrating processes
Abstract
One of the commonly encountered type of processes in industry is integrating systems. For this type of processes, tuning formulas to calculate optimally integral-proportional derivative controller parameters to reject input load disturbance, which is an important problem in process control, are presented here. Simple tuning formulas are provided to set the integral-proportional derivative controller parameters for rejection of input load disturbance of integrating plus first order plus dead time and double integrating plus first order plus dead time processes. Time-weighted integral performance indices are exploited to derive optimal formulas for input load disturbance rejection. Achieved formulas for integral-proportional derivative tuning contain only process transfer function parameters. To show benefits and usefulness of the suggested design approach, simulation examples are imparted. Furthermore, comparisons to some available design approaches are given to reveal the superior performance of the suggested design method. In addition, proposed design method is experimentally validated by controlling a cart position.
WoS Q Category
Q4Scopus Q Category
Q2Volume
237Issue
4Collections
Related items
Showing items related by title, author, creator and subject.
-
İntegratörlü süreçler için I-PD denetleyici tasarımı ve asimetrik sistemlerin röle geri besleme ile modellenmesi
Peker, Fuat (Dicle Üniversitesi, Fen Bilimleri Enstitüsü, 2024)Bu tez çalışması kapsamında integratörlü süreçlerin kontrolü ve asimetrik ısınma ve soğuma sistemlerinin röle geri besleme ile modellenmesi ve kontrolü üzerine çalışmalar yapılmıştır. İntegratörlü süreçlere, yani transfer ... -
New extension of Alexander and Libera integral operators
Güney, H. Özlem; Owa, Shigeyoshi (Scientific Technical Research Council Turkey-TUBITAK, 2022)Let T be the class of analytic functions in the open unit disc U with f (0) = 0 and f'(0) = 1. For f(z) is an element of T, the Alexander integral operator A(-1)f(z), the Libera integral operator L(-1)f(z) and the Bernardi ... -
New applications of the Bernardi integral operator
Owa, Shigeyoshi; Güney, Hatun Özlem (MDPI AG, 2020)Let A(p, n) be the class of f (z) which are analytic p-valent functions in the closed unit disk U = {z ∈ C: |z| ≤ 1}. The expression B-m-λf(z) is defined by using fractional integrals of order l for f (z) ∈ A(p, n). When ...