Yurttaş, S. ÖyküHall, Toby2023-11-032023-11-032017Yurttaş, S. Ö. ve Hall, T. (2017). Counting components of an integral lamination. Manuscripta Mathematica, 153(1-2), 263-278.0025-2611https://link.springer.com/article/10.1007/s00229-016-0885-4https://hdl.handle.net/11468/13046We present an efficient algorithm for calculating the number of components of an integral lamination on an n-punctured disk, given its Dynnikov coordinates. The algorithm requires O(n2M) arithmetic operations, where M is the sum of the absolute values of the Dynnikov coordinates.eninfo:eu-repo/semantics/openAccess20F3657M5057N05Counting components of an integral laminationCounting components of an integral laminationArticle1531-2263278WOS:0003997110000122-s2.0-8499085717410.1007/s00229-016-0885-4Q2Q3