Yucedag, Zehra2024-04-242024-04-2420150126-67052180-4206https://doi.org/10.1007/s40840-014-0057-1https://hdl.handle.net/11468/15009This paper investigates the existence and multiplicity of solutions for superlinear p(x) -Laplacian equations with Dirichlet boundary conditions. Under no Ambrosetti-Rabinowitz's superquadraticity conditions, we obtain the existence and multiplicity of solutions using a variant Fountain theorem without Palais-Smale type assumptions.eninfo:eu-repo/semantics/closedAccessP(X)-Laplace OperatorVariable Exponent Lebesgue-Sobolev SpacesVariational ApproachVariant Fountain TheoremExistence of Solutions p(x) for Laplacian Equations Without Ambrosetti-Rabinowitz Type ConditionExistence of Solutions p(x) for Laplacian Equations Without Ambrosetti-Rabinowitz Type ConditionArticle38310231033WOS:0003556251000082-s2.0-8493066759010.1007/s40840-014-0057-1Q1Q2